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Calculation algorithms are developed that permit a determination of the time variation for the position of 

the outer boundary of a condensate film, depositing on a barrier, based on its surface temperature measured 

experimentally. 

As a result of the interaction of a high-temperature gas flow containing liquid particles with a barrier, whose 
temperature is lower than the melting temperature of the particles, a solidified condensate layer is formed on it. 

The effect of the condensate layer deposition is manifested, on the one hand, in the enhancement of the thermal 

action due to direct energy transfer from the condensed phase to the barrier and, on the other hand, in the 

formation of a kind of a "coating" possessing a certain specific heat and thermal resistance. 

The heat flux coming onto the barrier when a solidified condensate layer is formed on its surface is largely 

dependent on the rate of the layer build-up. In experimental studies of the rate of the heat exchange of the barrier 

with the high-temperature gas flow containing liquid particles direct measurement of the build-up rate of the 
solidifying condensate layer is unfeasible, and only nonstationary temperatures of the barrier surface can be 

measured with the aid of sensors of the wall temperature. 

Information on the surface temperature of the barrier allows a reconstruction of the incoming heat flux. By 

means of these data it is possible, in turn, to formulate an inverse problem of heat conduction that consists in 

determining the law of motion for the phase transition front with a constant temperature equal to the melting 

temperature of the deposit material. (It is assumed that a condensate layer with temperature of the outer surface 

not higher than the melting temperature maintains itself on the barrier; liquid particles that have not managed to 

cool on the barrier are entrained by the gas flow). Such a problem in terms of inverse heat conduction problems 

may be included among so-called geometric statements. The solution of this problem reduces to solving a system 
of nonlinear Volterra integral equations of the first kind. This is typically an incorrect problem [1, 2 ] whose solution 

is complicated by nonlinearity relative to the sought parameter. We consider it reasonable to attempt to construct 

the algorithms for calculating the boundary position on the basis of the solution of the inverse boundary-value 

problem of heat conduction for a "fictitious" wall with thickness specified a priori. Such an approach suggests that 

the corresponding thermal conditions at the moving boundary of the actual problem may be reproduced adequately 

by "selecting" the conditions at the outer surface of the fictitious wall and the initial temperature distribution across 

its thickness. Such an approach may be validated by analyzing the well-known analytic solution of the Stefan 

problem [3 ] on freezing of a semi-infinite mass, where the position of the front of phase transitions (the isotherm 

position) may actually be found by considering the equivalent problem of heat conduction with no phase transitions 
for a wall with a thickness prescribed a priori and an initial temperature that is a function of the problem parameters. 

With a view to the above considerations, the problem in a one-dimensional statement may be formulated 
as follows. 

An infinite plate of thickness c52 (2), thermally insulated on one side, is brought in contact at the initial 

moment with a condensate layer of fictitious thickness 6 (1), in which, under the effect of certain conditions at the 

outer boundary, temperature fields with a moving isotherm corresponding to the temperature of the phase transition 
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Fig. 1. Thermal model of the problem. 

are realized (Fig. 1). Information on the conditions at the fictitious b o u n d a ~  is obtained from solving the following 

incorrect problem: 

02T ( x ,  "r) = 1 0 T  (x ,  "r) 0 -< x -< c3 ; (1) 
O x 2 a O'~ ' 

OT (x, ~) 
Ox x=O = qw (r) ; 

(2) 

T (0,  ~) = T w (v) ; (3) 

T ( x ,  O) = u ( x )  = ? (4) 

T (~, ~) = ? (5) 

where Tw(-r) is a function known from experiment, and qw(r) can be found by recalculating the boundary conditions 

on the basis of the solution to the problem: 

02T2 ("x, r:) 1 0 T 2  ~ ,  r) (6) 
- , 0 - <  ~ - <  C3z; 

OX 2 a 2 0~: 

T 2 (C32, Z') = T w(l') ; (7) 

o7"z ~ ,  0 
o~ ~=o = O; (8) 

* .  (9 )  T 2 ('x, 0) = TO, 
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2t20T 2 ('x, r) ~=32 
02 = qw (O = ? 

The solution of the systems of equations (6)-(9) and (1)-(4) has the form 

ax .~ ~w(O)k(~-o)ao; 
qw(O = N o 

(10) 

(11) 

f f '  (5, o) ~(~ - o) dO = T (0, 0 + ~ f 
o o 

qw (0) ~r (~ - O) dO - 

- Z ( 0 ,  O) [ 1 - R I ] -  ~_, T ( iAx,  0) [Ri - Ri+I ] - ~ (6, 0) [Rm - R3 7, (12) 
i= l  

Converting from the integral representation (11) and (12) to a numerical approximation, we write the 
following matrix expressions: 

22 - -  (11') - - k T  (0); 
qw - A Fo x 5 2 

= - - (  5 ) 1 2  ) -- (12') 
k T ( 5 ) =  1 - ~ A F o  252 ~* ~ Y ( 0 ) - B T  0, 

where qw, u and T0 are vectors whose elements correspond to qw(r), -T(0,Q, T(5, Q, and T(x, 0) at the 
discretization points; Av and  A(x) are the steps of discretization in time and along the coordinate; AFo2 = 
(axAQ/S2; AFo = (aAQ/52; and I is the unit matrix of N-th order. 

The elements of the matrices ~, ~, ~* , and B are determined using the expressions 

8 
(nAt) = 1 - 2 exp [-/~22 nA Fox]" 

k=l ( 2 k -  1) x 

1 16 ~ ( -  1) k+l 
- exp [- /~k z* nA Fo l (nAy) = nA Fo 2 at" ~-3 k=l (2k - 1) 3 " 

~ * ( n A r ) =  1 -  ~ 2 .2 -;-~ exp [ -  ttk nkFo ] ; 
k = l  pt k 

Ri(nAr)= 1 -  ~ 2 
k=l 

1 2 i  

k 

exp [- /~;x nA Fo ] ; 

k 

k=l /t k 

where /~  = (2k-  1)~/2. 
As is known [4 ], an exact solution of Eq. (12) can be obtained only for a function Tw(O that satisfies very 

stringent conditions. Should an error be imposed on this function, Eq. (12) can no longer be solved exactly, 
generally speaking. It has to be solved approximately with the use (by virtue of the random character of the errors) 
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of statistical considerations resembling those used in the theory of signal separation on a background of random 
interferences (noises). 

Allowance for disturbances and their removal permit an effective solution of the formulated problem. The 
elements of the matrix ~ are represented as 

N 

]=1 

where the functions g,1] and ~2] are eigenvectors and/~] are eigenvalues of the matrices 

Then the solution of Eq. (12') has the form 

^ N 
(6) = c/ v,2: ( i ) ,  

]=l Vrfl-]] (1 + t]) 

where c = ~ITz; z is the right side of Eq. (12'); and t] = 6c~/c-] is the "interference-signal" ratio. 

Instead of the unknown ~] use should be made of 

2 %  

q = q , o : ,  

1 7 - 2 .  2 . 1 / 2  where co] ~ + (1/4 = - o c ] / c ] )  is the weight function. 
Ultimately, the expression for the temperature at the fictitious boundary has the matrix form 

(13) 

(6) = Y22/~o ~'1T WT (0) -- ~p2pa ~ ~1T BT 0 . (14) 

m 

It involves the unknown vector of the initial temperature distribution in the fictitious layer TO, which is found from 

the following reasoning. 
Because solution (14) is app/'oximate, the heat flux at the inner surface of the fictitious layer 

(0) = - P 0  Y(0) +P6~(c~)  + R T  0 
(15) 

calculated with its aid does not coincide with the heat flux at the same point predicted from Eq. (11'). 
On substituting expression (14) into Eq. (15) and taking account of Eq. (11 '), we set up the functional 

N 
~ ,  [qw n - qn (0) ]2 = A.  (i6) 

n = l  

p 

To find the elements of the vector To, we minimize functional (16) by a gradient method using the 

minimizing sequence 

-~o01 § = Tq )oi 
(17) 

where 

G =  - 2 ( P 6 ~ 2 ~ 1 T B + R )  T •  

x {qw + [Po - Pa ~02/~. v/1T W] T (0) + (P~ V/2/~o ~1T B - R) T0} 
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Initial data 
Tw(3), eT w, eT O, a2, ,'1.2, 62, a, ~, 6; 

1 
Calculation of qw(r), eqw; I 

Calculation, using the iteration method, of the initial temperature distribution 
T(x, 0) with the discrepancy A <_ eqw, Tw(3), eTw, eTo 

I A I Calculation of T (6, r) 

I Calculation of the temperature field T(x, 3); I 

Determination of the law of motion of the boundary of thephase [ 
transition 6b(r) from the isotherm corresponding to T L [ 

I Calculation of q(eb, z)at the boundary of the phase transition. I 

Fig. 2. Block diagram of the calculation program for the thickness of the 
condensate layer and the density of the heat flux on its outer boundary. 

B 

is the vector of the gradient of functional (16) with respect to the corresponding elements of the vector T o . 
The iteration is continued until the discrepancy condition A <_ eqw is fulfilled, where eqw is the 

computational error for the heat flux. 
The elements of the matrices P0, P~, and R are determined using the expressions 

Pi(nAr)= 1 - 2  ~ ( -  1) k+l x 
k=l 

x c o s [ J r k ( 1 2 i - l A x ) ]  :Tr2k 2 } 3- exp ( -  nA Fo)- ; 

P~(nAT:)=~[1-2 ~ (- l)k+lexp(-:~2k2nAF~ 1 

Having determined the initial temperature distribution in the fictitious layer T(x, 0), we find the 
temperature at the fictitious boundary T(d, r) from Eq. (14) and, based on the solution of the direct problem of 
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Fig. 3. Results of a numerical experiment: 1) evaluation of the position of the 

phase transition boundary by the proposed algorithm (eTw-- 0.05; eTo ---- 0.05, 
and 6 = 1.5); 2) data of the analytic solution. 6b, mm; r, sec. 
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Fig. 4. Results of processing the data of a physical experiment: I) qw is the 

heat flux density on the barrier calculated from Tw, ;t, and a of the barrier; 

2) bwp is the evaluation of the heat flux density on the barrier calculated from 

Tw, q~b ' C3b, • and a of the condensate layer; 3) q~b is the calculated heat 
flux density on the outer boundary of the condensate layer; 4) db is the 
thickness of the condensate layer; 5) T w is the measured surface temperature 

of the barrier, q, kW.m-2; Tw, ~ db, ram. 

heat condition, determine the temperature field at discrete points of the fictitious domain, which permits isolation 

of the coordinate of the isotherm corresponding to the melting temperature of the condensate. The time dependence 

of the coordinate 6b(T) is the law of motion of the boundary of the phase transition during condensate deposition 
on the barrier. 

With regard for the above, we developed a program for the computer calculation (see the block diagram in 

Fig. 2) of the thickness of the condensate layer on the barrier fib(r) and the heat flux density q (Sb, r) at the outer 

boundary of the layer. The program developed was checked by a numerical experiment that solved a problem of 
freezing of an infinite mass that has an analytic solution [3 ]. 
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Analysis of the results of the numerical experiment indicated satisfactory convergence of the proposed and 
exact solutions (Fig. 3). 

Using the proposed procedure, we processed results of a physical experiment with formation of a condesate 
film on the surface of a sensor of wall temperature. The processing data are given in Fig. 4. 

N O T A T I O N  

2, thermal conductivity; a, thermal diffusivity; x, ~, spatial coordinates; T, temperature; z-, time. 
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